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On the Consistency of Minimum
Complexity Nonparametric Estimation

Zhiyi Chi and Stuart Geman

Abstract—Nonparametric estimation is usually inconsistent without
some form of regularization. One way to impose regularity is through
a prior measure. Barron and Cover [1], [2] have shown that complexity-
based prior measures can insure consistency, at least when restricted
to countable dense subsets of the infinite-dimensional parameter (i.e.,
function) space. Strangely, however, these results are independent of the
actual complexity assignment: the same results hold under an arbitrary
permutation of the match-up of complexities to functions. We will show
that this phenomenon is related to the weakness of the convergence
measures used. Stronger convergence can only be achieved through
complexity measures that relate to the actual behavior of the functions.

Index Terms—Consistency, minimum complexity estimation, minimum
description length, nonparametric estimation.

I. INTRODUCTION

Maximum-likelihood, least squares, and other estimation tech-
niques are generally inconsistent for nonparametric (infinite-

Manuscript received December 9, 1996; revised October 20, 1997. This
work was supported by the Army Research Office under Contract DAAL03-
92-G-0115, the National Science Foundation, under Grant DMS-9217655, and
the Office of Naval Research, under Grant N00014-96-1-0647.

The authors are with the Division of Applied Mathematics, Brown Univer-
sity, Providence, RI 02912 USA.

Publisher Item Identifier S 0018-9448(98)04795-6.

dimensional) problems. Some variety of regularization is needed.
An appealing and principled approach is to base regularization
on complexity: Define an encoding of the (infinite-dimensional)
parameter, and adopt codelength as a penalty. Barron and Cover
[1], [2] have shown how to make this work. They get consistent
estimation for densities and regressions, as well as some convergence-
rate bounds, by constructing complexity-based penalty terms for
maximum-likelihood and least squares estimators.

Can we cite the results of Barron and Cover as an argument for
complexity-based regularization (or, equivalently, for complexity-
based priors)? Apparently not: The results are independent of the
particular assignment of complexities. Specifically, the results are un-
changed by an arbitrary permutation of the matching of complexities
to parameters.

Of course there are many ways to define convergence of functions.
We will show here that the surprising indifference of convergence
results to complexity assignments is in fact related to the convergence
measures used. Stronger convergence requires a stronger tie between
the parameters (functions) and their complexity measures.

Section II is a review of some Barron and Cover results. Then
some new results about consistency for nonparametric regression are
presented in Section III. (Proofs are in the Appendix.) Taken together,
the results of Section III establish the principle that stronger types
of convergence are sensitive to the particulars of the complexity
assignment. We work here with regression, but the situation is
analogous in density estimation.

Our results are about consistency only. The important practical
issue of relating complexity measures toratesof convergence remains
open.

II. COMPLEXITY-BASED PRIORS

Barron and Cover [1] have shown that the problem of estimating
a density nonparametrically can be solved using a complexity-based
prior by limiting the prior to a countably-dense subset of the space
of densities. More specifically, given a sequence of countable sets
of densities�n, and numbersLn(q) for densitiesq in �n, let
� = [n�n. SetLn(q) =1 for q not in�n. For independent random
variablesX1; X2; � � � ; Xn drawn from an unknown probability
density functionp, a minimum complexity density estimator̂pn is
defined as a density achieving the following minimization:

min
q2�

Ln(q)�

n

i=1

log q(Xi) :

If we think of Ln(q) as the description length of the densityq, then
the minimization is over total description length—accounting for both
the density and the data. Barron and Cover showed that ifLn satisfies
the summability condition

sup
n

q2�

2�L (q)
< +1

and the growth restriction

lim sup
n

Ln(q)

n
= 0; for everyq 2 � (1)

then for each measurable setS

lim
n!1

P̂n(S) = P (S) with probability one
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provided thatp is in the information closure� of �. Here,P̂n andP
are the probability measures associated with the densitiesp̂n andp,
respectively, and “p is in the information closure� of �” means that
infq2� D(pkq) = 0, whereD(pkq) is the relative entropy ofp to q.

Barron and Cover also showed that ifLn satisfies a “light tail
condition,” i.e., if for some0 < � < 1 and b

q2�

2��L (q) � b; for alln (2)

and if Ln also satisfies the growth restriction (1), then forp 2 �,
with probability one

lim
n!1

jp� p̂nj = 0:

A second paper by Barron [2] offers a minimum-complexity
solution to the regression problem. Let(Xi; Yi)

n
i=1 be independent

observations drawn from the unknown joint distribution of random
variablesX; Y , where the support ofX is inRRRd. HereX is the vector
of explanatory variables andY is the response variable. Functions
f(X) are used to predict the response. The error incurred by a
prediction is measured by a distortion functiond(Y; f(X)), the
most common form being(Y � f(X))2. Let h be a function which
minimizesE(d(Y; f(X))), which is to say thath(x) = E(Y jX =
x) in the squared error case. When a functionf is used in place of
the optimum functionh the “regret” is measured by the difference
between the expected distortions

r(f; h) = E(d(Y; f(X)))�E(d(Y; h(X))):

Barron defines statistical risk for a given estimatorĥn to be
E(r(ĥn; h)). Given a sequence of countable collections of functions
�n, and numbersLn(f), f 2 �n, satisfying the summability
condition

sup
n

f2�

2�L (f) <1

the index of resolvability is defined as

Rn(h) = min
f2�

r(f; h) + �
1

n
Ln(f)

and a minimum complexity estimator is a functionĥn 2 �n which
achieves

min
f2�

1

n

n

i=1

d(Yi; f(Xi)) + �
1

n
Ln(f) :

Again there is a coding interpretation: ifd(Y; f(X)) is log proba-
bility of Y givenX, then ĥn minimizes total description length for
the modelf , plus the dataY1; � � � ; Yn givenX1; � � � ; Xn. Barron
showed that if the support ofY and the range of each functionf(X)
is in a known interval of lengthb, then with� � 5b2=3 log e, the
mean-squared error converges to zero at rate bounded byRn(h), i.e.,

E(r(ĥn; h)) � O(Rn(h)): (3)

Taken together, these results offer a general prescription for non-
parametric estimation of densities and regressions. Furthermore, the
connection to complexity is appealing: It is not hard to invent suitable
functionsLn(�) by counting the bits involved in a natural encoding of
�n (cf. [1]). There is, however, a disturbing indifference of the results
to the details of the complexity measure. For any set of permutations
�n on �n, defineL0n(�) = Ln(�(�)) and observe thatL0n satisfies

whatever conditionsLn does, and hence the same results are obtained
(with the same bound on rate in (3)) usingL0n in place ofLn! In
generalL0n will have no meaningful interpretation as a complexity
measure.

III. W HAT TIES CONSISTENCY TO COMPLEXITY?

Suppose thatX is a random variable from a probability space
(
; F ; P ) to ([0; 1]; B). X introduces a measurePX on [0; 1]
through the relationPX(B) = P (X�1(B)), for B 2 B. Choose a
countable dense subset� in L2([0; 1]; PX), and define a “complexity
function” L: � ! NNN . For any random variableY from (
; F ; P )
to (R; B) with

h(x) = E(Y jX = x) 2 L2([0; 1]; PX)

define the estimator̂hn to be a function in� which achieves

min
f2�

L(f)

n
+

1

n

n

i=1

(Yi � f(Xi))
2 :

We will always assume thatL satisfies a much stronger tail condition
than (2)

f2�

e��L(f) <1; for any� > 0: (4)

The first proposition demonstrates that for a weak form of con-
vergence, consistency is essentially independent of the complexity
measure:

Proposition 1: If EY 4 < 1, then

ĥn
P
�! h; a.s.

Obviously, the proposition remains true for any permutation� of �
and resulting complexity functionL0(f) = L(�(f)). But, suppose
we were to ask for consistency inL2 (a.s.) in place of consistency in
probability (a.s.)? Then, despite the strength of the tail condition (4),
we would evidently need to pay closer attention to the complexity
measure:

Proposition 2: There exists a random variableX, a countable
dense subset� in L2([0; 1]; PX), and a functionL: � ! NNN
satisfying (4) such that for anyY with h(x) 62 �, the L2 norm
of ĥn (in L2([0; 1]; PX)) goes to+1 with probability one.

(We are focusing on the regression problem, but analogous ar-
guments apply to probability density estimation. For example, by a
construction similar to the one used for Proposition 2, the minimum
complexity density estimator discussed in Barron and Cover [1] may
not converge to the actual densityp in the sense of Kullback–Liebler

p log
p

p̂n
6! 0

even though the codingL satisfies the strong condition (4).)
One way to rescue consistency is to tie the complexity measure

L(f) more closely tof :

Proposition 3: Suppose that for everyf 2 �, Ef4(X) < 1.
AssumeEY 4 is finite (and hence so isEh4(X)). Construct a
complexity function as follows: First, define

C1(f) = (Ef4(X) + e)e2Ef (X)

and

C(f) = C1(f) log C1(f):
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Then, given anyL1: � ! N which satisfies (4), letL(f) =
C(f)L1(f). Then

ĥn
L
�!h a.s.

Proofs for the propositions are in the Appendix.

APPENDIX

Recall thatX is a random variable defined on a probability space
(
; F ; P ), taking values in([0; 1]; B). PX is defined on[0; 1] by
PX(B) = P (X�1(B)), for B 2 B. � is then a countable dense
subset ofL2([0; 1]; PX). (Take, for example,� to be a countable
dense set inL2([0; 1]; dx); this will work for any PX which is
absolutely continuous with respect to Lebesgue measure and has
bounded derivativedPX=dx.) The complexity functionL: � ! NNN
is always assumed to satisfy the “strong tail condition” (4).1 Finally,
we assume that the response variableY (a random variable on
(
; F ; P )) has anL2-valued regressionh(x)

h(x) = E(Y jX = x) 2 L2([0; 1]; PX):

The regressionh(x) is estimated by a function̂hn 2 � that
achieves the minimum in

min
f2�

L(f)

n
+

1

n

n

i=1

(Yi � f(Xi))
2 :

We begin with Proposition 2.

Proposition 2: There exists a random variableX, a countable
dense subset� in L2([0; 1]; PX), and a functionL: � ! NNN
satisfying (4) such that for anyY with h(x) 62 �, the L2 norm
of ĥn (in L2([0; 1]; PX)) goes to+1 with probability one.

Proof: ChooseX so thatPX is Lebesgue measure. Fix� =
ff1; � � � ; fn; � � �g dense inL2([0; 1]; PX). Let B1; � � � ; Bn; � � �
be a sequence of measurable subsets in[0; 1], each of which has
positive probability, such that

P (91 � i � n; Xi 2 Bn; i.o. for n) = 0:

This condition can be achieved, for instance, if theB’s satisfy

1

k=1

[1� (1� PX(Bk))
k] <1:

Now for i = 1; 2; � � �, definegi(x) as

gi(x) =
fi(x); if x 62 Bi

Ai; if x 2 Bi:

We first selectA1 such thatE(g1� fn)
2 > 0 for all n 2 NNN . This

can be done since there are only countably manyf ’s while there
are uncountably many choices ofA1. We then inductively selectAi

such thatE(gi � fn)
2 > 0, for all n 2 NNN , andE(gi � gk)

2 > 0,
for k = 1; � � � ; i � 1. We also require ofAi that Eg2i ! +1.
Theng1; g2; � � � are distinct and none of them are in�. Modify � to
include g1; g2; � � �. DefineL: � ! N such that

L(fn) >L(gn)

and

f2�

e��L(f) <1; for any� > 0:

1For example, choosea(�) strictly positive such that f a(f) < 1. If
F (x) is any strictly positive function satisfyingF (x)=x ! 1 asx ! 1,
thenL(f) = F (� log a(f)) satisfies (4).

Now given Y , with

h(x) = E(Y jX = x) 2 L2([0; 1]; PX)

andh(x) 62 �, the set of! which satisfies

1

n

n

i=1

(Yi � f(Xi))
2 ! E(h(X)� f(X))2 +E(Y � h(X))2;

8 f 2 �

and

Xi(!) 62 Bn; 8 1 � i � n; 8 largen

is of probability one. For any! in this set, let

In(!) = arg min
k

L(fk)

n
+

1

n

n

i=1

(Yi � fk(Xi))
2

:

Then sinceh 62 �, In(!) ! 1 as n ! 1. For large n,
Xi(!) 62 BI (!) for all 1 � i � In(!), and hence

gI (!)(Xi(!)) = fI (!)(Xi(!))8 1 � i � In(!):

Therefore, for largen

L(gI )

n
+

1

n

n

i=1

(Yi � gI (Xi))
2

<
L(fI )

n
+

1

n

n

i=1

(Yi � fI (Xi))
2
:

Consequently, with probability one, for largen

ĥn = arg min
f2�

L(f)

n
+

1

n

n

i=1

(Yi � f(Xi))
2 2 fg1; g2; � � �g:

SinceE(g2i )!1, this completes the proof.

Remark: As mentioned in Section III, the same argument can be
used to show that the minimum complexity estimatorp̂n in [1] may
not converge to the true densityp, in the sense that

p log
p

p̂n
6! 0:

The proof of Proposition 1 is based on the following three lemmas.

Lemma 1: Fix � > 0. LetZ1; Z2; � � � ; Zn be a sequence of inde-
pendent and identically distributed (i.i.d.) random variables satisfying

a) Z1 � 0;
b) EZ2

1 < 1.

Then if

K � (Var (Z1) + �
2)eEZ and

�

K
< 1

then

P
1

n

n

i=1

(Zi � EZ1) � �� � 1�
�2

2K

n

:

Proof: For any t 2 (0; 1]

P
1

n

n

i=1

(Zi �EZ1) � �� � Ee
t(�Z +EZ ��)

n

:
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Let �(t) = Eet(�Z +EZ ��), then

�(0) = 1 �0(0) = ��

and

�00(t) =E((Z1 �EZ1 + �)2et(�Z +EZ ��))

� E(Z1 �EZ1 + �)2etEZ � K; for t 2 (0; 1]:

Hence

�0(t) � � �+Kt; for t 2 (0; 1]

and

�(t) � 1� �t+ 1
2
Kt2; for t 2 (0; 1]:

Taket = �=K < 1, which is the minimizer of1� �t+Kt2=2. Then

P
1

n

n

i=1

Zi < EZ1 � � � 1�
�2

2K

n

:

Lemma 2: SupposeEY 4 < 1. Let

h(x) = E(Y jX = x) 2 L2([0; 1]; PX):

Assume� is a countable dense subset of

ff 2 L2([0; 1]; PX): jf(x)j �Mg

and L: � ! NNN satisfies condition (4). Then given0 < � < 1,
with probability one, for sufficiently largen and all f 2 � with
E(f � hM)2 � 3�

1

n

n

i=1

(hM(Xi)� Yi)
2 + � <

L(f)

n
+

1

n

n

i=1

(f(Xi)� Yi)
2 (5)

where for any functionf

fM(x) =
f(x); if jf(x)j �M
sign (f(x)) �M; otherwise.

(6)

Proof: We shall first give the idea of the proof. Assumejhj <
M . With probability one, whenn is sufficiently large

1

n

n

i=1

(h(Xi)� Yi)
2 + �

is bounded byE(h(X)�Y )2+2�. We then get a stronger inequality

E(h(X)� Y )2 + 2� �
L(f)

n
+

1

n

n

i=1

(f(Xi)� Yi)
2:

The left-hand side equals

E(f(X)� Y )2 � E(f(X)� h(X))2 + 2� � E(f(X)� Y )2 � �:

Hence we can prove the lemma by showing

1

n

n

i=1

(f(Xi)� Yi)
2 � E(f(X)� Y )2 > ���

L(f)

n

is true with probability one, for sufficiently largen and all f 2 �.

By Lemma 1, for each fixedn and f 2 �, the probability that this
inequality does not hold is bounded by

1�
(�+ L(f)=n)

K

n

� 1�
�2

K

n

1�
�L(f)=n

K

n

whereK is a large number independent ofn. Because1� x < e�x

for all x > 0, the above probability is then bounded by

1�
�2

K

n

e��L(f)=K :

Summing over allf 2 �, we see that the probability that (5) is not
true is exponentially small. A Borel–Cantelli argument then finishes
the proof.

We turn now to the details of the proof. Define

B(hM) = ff 2 �: E(f � hM)2 � 3�g: (7)

For f 2 �, define

Tf; n(hM) =
1

n

n

i=1

(f(Xi)� Yi)
2 +

L(f)

n

�
1

n

n

i=1

(hM(Xi)� Yi)
2 + � (8)

Vn(hM) =
f2B(h )

Tf; n: (9)

Write

Rn(hM) =
1

n

n

i=1

(hM(Xi)� Yi)
2

�E(hM(X)� Y )2 < � (10)

R(hM) = lim inf
n!1

Rn(hM): (11)

Henceforth, we will simplify the notation by writingB instead of
B(hM), Tf; n instead ofTf; n(hM), and so on. By the strong law of
large numbers,P (R) = 1. Next show that n P (Vn \ Rn) < 1.
If this is true, then by the Borel–Cantelli lemma

P (lim sup
n!1

Vn)=P (lim sup
n!1

Vn \R)�P (lim sup
n!1

(Vn \Rn))=0

which is what needs to be proved.
For ! 2 Rn and f 2 B

1

n

n

i=1

(hM(Xi)� Yi)
2 + �� E(f(X)� Y )2

� 2�+E(hM(X)� Y )2 � E(f(X)� Y )2:

Clearly,

E(Y � f(X))2 = E(Y � h(X))2 +E(h(X)� f(X))2:

Since jf j � M , jh � f j = jh � hM j + jhM � f j

E(Y � f(X))2 � E(Y � h(X))2 + E(h(X)� hM (X))2

+ E(hM(X)� f(X))2

= E(Y � hM(X))2 + E(hM(X)� f(X))2

� E(Y � hM(X))2 + 3�:

Hence

1

n

n

i=1

(hM(Xi)� Yi)
2 + � �E(f(X)� Y )2 � ��:
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Supposef 2 B andRn \ Tf; n 6= ;. For any! 2 Rn \ Tf; n, by
the above inequality

1

n

n

i=1

(f(Xi)� Yi)
2 � E(f(X)� Y )2 � ���

L(f)

n
= ��f; n:

Furthermore,

L(f)

n
�

1

n

n

i=1

(hM(Xi)� Yi)
2 + �

and hence

�f; n � 2�+
1

n

n

i=1

(hM(Xi)� Yi)
2

� 3 + E(hM(X)� Y )2 = H: (12)

Fix K such that

K � (E(M + jY j)4 +H2)eE(M+jY j) :

Now for anyf 2 B with Rn \ Tf; n 6= ;, it is easy to check

(Var ((f(X)� Y )2) + �2f;n)e
E(f(X)�Y ) � K and �f; n < K:

Then by Lemma 1, for anyf 2 B with Rn \ Tf; n 6= ;

P (Rn \ Tf; n)

� P
1

n

n

i=1

(f(Xi)� Yi)
2 � E(f(X)� Y )2 � ��f; n

� 1�
(L(f)=n+ �)2

2K

n

� 1�
�2

2K

n

1�
�L(f)=n

K

n

:

Since

�L(f)=n

K
<
��f; n
K

< 1

and 1 � x < e�x, for all 0 < x < 1, we getP (Rn \ Tf; n) is
bounded by

1�
�2

2K

n

exp �
�L(f)

K
:

Therefore,

P (Rn \ Vn) �
f2B

P (Rn \ Tf; n)

� 1�
�2

2K

n

f2�

exp �
�L(f)

K

and by the strong tail condition (4), exp(��L(f)=K) < 1.
SinceK is independent ofn, P (Rn \ Vn) is exponentially small
and P (Rn \ Vn) converges.

Lemma 3: Let � be a finite measure, and letf and fn; n =
1; 2; � � � ; be measurable functions. Iff < 1; �-a.s., and if

lim inf
M!1

lim sup
n!1

E(fn;M � fM)2 = 0

then fn
�
!f .

Proof: SupposeMn ! 1 is a sequence such that

lim
k!1

lim sup
n!1

E(fn;M � fM )2 = 0:

Fix � > 0 andM > 0. Then

�(fjfn � f j > �g) � �(fjf j �Mk � �g)

+ �(fjf j < Mk � �; jfn;M � fM j > �g)

� �(fjf j �Mk � �g) +
1

�2
E(fn;M � fM )2:

Let n!1 and thenk !1 to complete the proof.

Proposition 1: If EY 4 < 1, then

ĥn
P
�!h; a.s.

Proof: The idea is to chooseMk ! 1 and then truncate
the functions in� as in (6). Then by Lemma 2, we will get
E(ĥn;M � hM )2 ! 0, where ĥn;M is the truncated̂hn, and

hM is the truncatedh. We then use Lemma 3 to getĥn
P
! h.

Filling in the details, given� > 0, there isM = M(�) > 0 such
that E(h � hM)2 < � and

jY j>M

(jY j+M)2 � 4
jY j>M

jY j2 < �:

With probability one, whenn is sufficiently large

L(ĥn)

n
+

1

n
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Consider
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(Yi � ĥn;M(Xi))
2:

Observe thatjYi � ĥn;M(Xi)j > jYi � ĥn(Xi)j implies jYij > M .
Hence
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(jYij +M)2 � IjY j>M :

With probability one, for sufficiently largen
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n

n
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(jYij+M)2 � IjY j>M �
jY j>M

(jY j+M)2 + � < 2�
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and, therefore, for largen

L(ĥn)
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i=1

(Yi � ĥn;M(Xi))
2 �

1

n

n
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(Yi � hM(Xi))
2+ 3�:

Let �M = ffM : f 2 �g [ fhMg, which is dense in

L
2([0; 1]; PX) \ fkfk1 �Mg:

Define L0: �M ! NNN as

L
0(�) = minfL(f): fM = �; f 2 �g:

Then with probability one, for largen

L0(ĥn;M)
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(Yi � hM(Xi))
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L0 satisfies the strong tail condition (4). According to Lemma 2, with
probability one, for sufficiently largen

E(ĥn;M � hM)2 � 9�:

Let S(�) be the subset of points in
 such that the above relation
holds, i.e.,

S(�) = lim inf
n!1

!: E(ĥn;M � hM)2 � 9� :

Choose a sequence�n!0, and letMn=M(�n) andSn=S(�n):
Then onS = \Sn, which has probability one

lim
k!1

sup lim
n!1

E(ĥn;M � hM )2 = 0:

By Lemma 3, for any! 2 S, ĥn
P
�!h, which completes the proof.

Proposition 3: Suppose that for everyf 2 �, Ef4(X) < 1.
AssumeEY 4 is finite (and hence so isEh4(X)). Construct a
complexity function as follows: First, define

C1(f) = (Ef4(X) + e)e2Ef (X)

and

C(f) = C1(f) log C1(f):

Then, given anyL1: � ! N which satisfies (4), letL(f) =
C(f)L1(f). Then

ĥn
L
�!h a.s.

Proof: We will follow closely the proof and the notation of
Lemma 2. As in Lemma 2, we need to show thatP (lim sup Vn) = 0.
Fixing a numberD = D(Y; h; �), which will be determined later,
we first decomposeVn as

Vn =
f2B

Tf; n =
f2B;L (f)�D

Tf; n [
f2B;L (f)<D

Tf; n

=V
0
n [ V

00
n :

Since there are only finitely manyf with L1(f) < D, by the strong
law of large numbers,P (lim sup V 00n ) = 0. Thus in order to get
P (lim sup Vn) = 0, we need only show thatP (lim sup V 0n) = 0.
Similar to Lemma 2, it is enough to check

n

P (V 0n \Rn) <1:

Derive again the constantH, as in (12). Then for eachf 2 �,
define

K(f) = (Var ((f(X)� Y )2) +H
2)eE(f(X)�Y )

> e:

Then for anyf 2 B with Rn\Tf; n 6= ;, as in the proof of Lemma 2

P (Rn \ Tf; n) � 1�
�2

2K(f)
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:

Hence
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L (f)�D

exp (L1(f)J(f; �))

where

J(f; �) = �
�C(f)

K(f)
+

log K(f)

L1(f)
:

It is easy to see that there is a constantc = c(Y; h) > 0, such that
C(f) � cK(f) log K(f) > 0. Now chooseD = D(Y; h; �) such
that �cD � 2. Then forL1(f) � D

log K(f)

L1(f)
�

�C(f)

2K(f)
:

SinceK(f) > e

J(f; �) � �
�C(f)

2K(f)
� �

�C(f)

2K(f) log K(f)
� �

�c

2
:

So
1

n=1

P (Rn \ V
0
n) �

2

�2
f2�

e
��cL (f)=2

<1:

Similar to Lemma 3, we can now conclude that for any0 < � < 1,
the set

S(�) = !: E(ĥn � h)2 < 3�; for sufficiently largen

has probability one. Finally, then, for! 2 \1k=1S(k
�1)

E(ĥn � h)2 ! 0 asn!1:
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